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A three-dimensional vibration study is presented using the three-dimensional
theory developed by Chao et al. [34-39] for a variety of simply supported shallow
spherical, cylindrical, plate, and saddle (hyberbolic) panels in rectangular planform.
A complete survey and comparison of existing literature have been made with
excellent lowest frequencies via a 3-D augmented energy variational approach. In
all of these shell configurations, natural frequencies are noted to decrease in the
above-mentioned order according to minimum total potential energy in the
natural state. © 2000 Academic Press

1. INTRODUCTION

There are numerous papers published on vibration of shells and shallow panels.
The present work is a general survey of and comparison with the literature focused
on free vibration of the various curved panels, isotropic [1-5, 7-9] and laminated
composite [10-42], on simple supports. The most commonly studied geometric
configurations are of the cylindrical and spherical types of construction, but there are
a few of the hyperbolic or saddle shapes [35, 41]. As to composites lamination, most
are reported on cross-ply with a few on angle-ply constructions [6, 14, 19, 23, 28, 40].
Fundamental theories have been evolving through the classical shell theory [1-4,
6-9, 26], first order shear deformation theory (FSDT) [5, 10-21], and higher order
shear deformation theory (HSDT) [22-25, 27-28]. Numerical methods include finite
elements [4, 9, 13, 15-18, 31], B spline functions and finite strips [ 7-9, 19, 20, 28], and
boundary domain elements [21]. In recent years, there has been strong tendency to
pursue the three-dimensional analysis [29-42] on more rigorous grounds.

To start with free vibration of the isotropic curved panels, fundamentals
frequencies of aluminium cylindrical panels were studied by Deb Nath [1] in 1969.
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Formulas for natural frequency and mode shape were also available in Belvins [2]
and Soedel [3] for the linear classical thin shell theory. The results were checked
again by Bardell and Mead [4] by use of the hierarchical finite element method
with displacement fields in Legendre polynomials. Kobayashi and Leissa [ 5] solved
the non-linear problem of large-amplitude free vibration of thick shallow shells
using the FSDT and Galerkin’s procedure. By using the B spline function, the
associated finite strip, and finite element analysis, Shen and Wan [ 7], Geannakakes
and Wang [8], and Fan and Luah [9] performed a series of vibration analyses of
spherical and cylindrical shell panels.

Secondly, a general review and comparison is made on laminated shell panels.
Vibration and buckling of cross-ply laminated circular cylindrical panels were
discussed in the early work of Sinha and Rath [10]. Bert and Kumar [11] analyzed
the vibration of cylindrical shells of bimodulus composite materials on a shear
deformation basis. Reddy [12] obtained a solution for fundamental frequencies of
moderately thick laminated cylindrical and spherical shells by using the first order
shear deformation theory with a shear correction factor. Finite element analyses for
free vibration natural frequencies of cross-ply laminated cylindrical panels were
performed by Fong [13], Ganapathi et al. [15], Chakravorty et al. [16, 17],
Goswami and Mukhopadhyay [18], and a spline strip analysis of Mizusawa and
Kito [20], based on FSDT. Natural frequencies of antisymmetric angle-ply
laminated circular cylindrical panels were also reported by Soldatos [6] using the
classical shell theory and Galerkin method, by Kabir and Chaudhuri [14] using
FSDT, and by Mizusawa and Kito [19] using the spline strip method. Wang and
Schweizerhof [21] established the boundary-domain element method for free
vibration of moderately thick laminated orthotropic shallow shells in which a shear
correction factor of 2 was also used.

The higher order shear deformation theory HSDT was developed by Reddy and
Liu [22] for shells laminated in orthotropic layers by setting shear stress free on the
lateral surfaces without regard to transverse normal stress condition and the
interlaminar transverse stress continuity. Bending and frequencies were treated for
cross-ply cylindrical and spherical shell panels. Soldatos [23] discussed the
influence of thickness shear deformation on free vibrations of rectangular plates,
cylindrical panels and cylinders of antisymmetric angle-ply construction. Librescu
et al. [24], and Palazotto and Linnemann [25] investigated free vibration and
buckling of laminated composite shallow shell-type panels using HSDT.
A three-dimensional version for vibration and stability studies on simply supported
cross-ply doubly curved shells was proposed by Wu et al. [27] in terms of
conventional stress resultants and stress couples.

In three-dimensional analysis, Bhimaraddi [29] investigated the free vibration of
doubly curved shallow shells in rectangular planform with interface continuity of
three-dimensional displacements and transverse stresses without considering the
Poisson strain effects. Analytical solutions for three-dimensional deformation,
stress and free vibration of thick, doubly curved, laminated shells were obtained by
Fan and Zhang [30]. Beakou and Touratier [31] developed a rectangular finite
element for analyzing composite multilayered shallow shells in statics, vibration
and buckling with interface continuity and lateral surface conditions of transverse
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shear stresses represented by cosine functions without regard to the interfacial
transverse normal stress. Ye and Soldatos [32] discussed three-dimensional
vibration of laminated cylinders and cylindrical panels with symmetric and
antisymmetric cross-ply lay-up using likewise 3-D surface conditions and interface
continuity. In general, the difficulty in applying the three-dimensional theory lies in
the unavailability of proper three-dimensional material mechanical properties.
Philippidis [33] found a way to calculate the transverse Poisson’s ratio in fiber
reinforced laminae by means of a hybrid experimental approach. The
three-dimensional consistent higher order theory has been developed by Chao et al.
[34-39] with successful application to stress, vibration, impact and shock of the
laminated plates and shell panels. Emphasis is placed on consistence with the
three-dimensional boundary condition and interlaminar stress continuity, exterior
and interior, respectively, as shown in equations (1)-(5), of which no existing
literature has taken into full account. Satisfaction of these complicated conditions
of the real physical world are implemented by effective use of the higher order
displacement fields and Lagrange multipliers via a 3-D augmented energy
variational approach. A layer wise analysis for free vibration of thick composite
cylindrical shells was done by Huang and Dasgupta [40] by using characteristic
beam functions in the in-plane directions and quadratic finite element interpolation
in the thickness direction. In the mean time, Huang [41] reported an exact analysis
for three-dimensional free vibrations of cross-ply cylindrical and double curved
laminates using the 3-D equations of motion and power-series method. Wu et al.
[42] published their refined asymptotic theory, in which slightly increased
frequencies appeared when expanded to order four.

In the present study, a thorough analysis and survey of doubly curved shallow
shell panels, including cylindrical, spherical and saddle forms made up of symmetric
or antisymmetric, cross-ply or angle-ply lay-ups is made in the essence of
three-dimensional elasticity as compared to the literature. The natural frequencies
obtained in the numerical analysis are among the lowest known in the literature,
because of the thorough consideration given to the three-dimensional boundary
conditions and interlaminar continuity to meet the physical requirements of the
natural state.

2. THEORETICAL FORMULATION

Consider a K layered curved panel of arc lengths a, b and thickness h with simple
supports. In the treatment of the various problems of interest, it may pertain to any
one of the following three types of boundary conditions, in which local stresses and
displacements are discussed rather than the global stress resultants and stress
couples in the conventional theories of plates and shells.

2.1. THREE-DIMENSIONAL BOUNDARY AND INTERLAMINAR CONDITIONS

The conventional edge boundary conditions are modified in the essence of
three-dimensional elasticity in terms of local displacements and stresses for the
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Figure 1. Schematic of laminated curved panels.

various support configurations for the 3-D boundary conditions as shown in
equations (1)—(4). In the present study of free vibration, the entire laminated panel is
considered surface traction free over both lateral surfaces. Both the natural and
geometrical edge conditions are justified by admissible displacement functions
exactly everywhere over the four edges for cross-ply laminations, while specified
geometric edge conditions are justified for angle-ply and other laminations. Three
types of simply supported edge boundary conditions are treated.

Lateral surface traction free conditions:

z=0 F¥=0.=0, FP=0,.=0, F9=0.=0,
t=h FP=06.=0, FP=05,=0. FE=0.=0, (I

S, fixed pin supported edges:
x=0,a z=0, O =uU=0v=w=_0; z#0, o, =0=w=0,
y=0,b z=0, opy=u=v=w=0
S, higher-roller support edges:
x=0,a on,=v=w=0 y =0, b: oy =u=w=0. (3)
S5 sliding pin supported edges:
z=0, x=0,a oy,=u=w=0; y=0,b: o=v=w=0. 4)

The surface conditions are labelled as Z{® and Z#® for transverse normal
and shear stresses free at the bottom and top surface respectively. Pasternak or
Winkler mode elastic foundation may be incorporated into the surface condition if
required.

Interlaminar continuity: Since individual displacement fields are assumed for
each layer of the laminate, interlaminar continuity of layer displacements in
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addition to transverse stresses must be satisfied at each interface between adjacent
layers:

FP =0l — gkt =0,  FP=uP —ut =0,

FP =l —glt =0, FW = kT o,

FP = —gkth =0, FP =y D —,
k=1,2,....K — 1, (5)

where, for simplicity, the interlaminar conditions are denoted as Z® with
subscripts 1, 2, 3, for the transverse stresses o., 0,., 0., and 4, 5, 6 for layer
displacement u, v, w. The superscripts + and — denote the upper and lower
surface of the respective layers. Layers are numbered from the bottom upwards.

2.2. THREE-DIMENSIONAL DISPLACEMENT FIELDS

Three-dimensional displacement fields are assumed according to the various
edge boundary conditions as above for each layer in terms of double Fourier series
of x, y for the in-plane co-ordinates and polynomials in z to proper higher orders
for the out-of-plane co-ordinate,

S fixed pin displacement field:

uk (X, Y, 2, t) = (]jmn z/sin X COS Yy,

HMK«
~Mx
~M=z oPM1= o 1=

Uk (x: V. Z, t) I/jmn Zj sin Xm COS Yy,

Il
»—-Mg
~Mx

o1~
~M=

WX, 3, 2, 1) = Wi 201 X, 510 3, (6)

where x,, = mnx/a, y, = nny/b.

S, hinge-roller displacement field.

M N z J :
ui(x, y, z, t) = ) ) |:U0mn <1 + R_> +) Ujm,,zJ} COS X,, SN Y,
X 1

M N z J )
v* (x, y,z,t)= Z Z [VOmn (1 + E) + Z Vimn ZJJ sin X, COS y,,
1 O 1

y
J M N )
WX, )z, ) =) )Y Wip 2/ sin x,,sin p,. (7)
o 1 1
S5 sliding pin displacement field:

M N z J M N )
(5, 2, 0= Y Usmm <1 + R_> SN X, €OS Yy 4+ Y. Y. Y. Uy 27 €08 X, 810
1 0 RY 1 0 1
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M N z J M
vz =YY Vom < f) COS X, Sin Yy, + Y )
0 1 1 1

y

Vimn 2’ 81N X, COS Y,

OMZ

M N )
Y Wimn 2/ sin x,, sin y,. (8)
1 1

o1~

wh(x, y, z, t) =

2.3. THREE-DIMENSIONAL ENERGY VARIATIONAL APPROACH

Strain components in a layer: In accordance with the three-dimensional shell
theory [34, 37], the small strains are expressed in terms of the displacement

Ny U ! @W _u)
=11 zR \ox "R.) "™ 1+2R, R.) "oz

__1 (oo w __ @_W AL
"I1izrR\ey "R, T 1+zR \oy R, ez

ow 1 ou 1 ov

Bz =g " =TT 2R, 3y " 1+ 2/R. ox
where R, and R, denote the principle radii of curvature of the curved panel in the
x and y directions respectively. Influence of the double curvatures has been
considered in corresponding terms in the above equations.

Stress components in a layer: The three-dimensional stresses in the shell panels are
obtained by using the anisotropic constitutive law of composites. In most of the
numerical examples in the referenced literature, the 3-D property data were
incomplete. The v55 can be calculated as per equation (13) in reference [33] and the
transverse shear modulus G,3 = E,/[2(1 + v35)].

©)

Oxx Cit Ciz Ci3 O 0 Cis Exx
Oyy Ciz Can Cpz O 0 C yy
0z _ Ciz Ci; Ci; _0 _0 Cse €2z (10)
[ 0 0 0 Cu Cis O Vyz
Oy, 0 0 0 Cus Css O Vxz
g Cis Cis C36 O 0 Ces Vxy

Energy formulation: In derivation of the modified equations of motion with the
surface conditions and interlaminar continuity included via a 3-D augmented
energy variational approach, the total potential is composed of the strain energy,
kinetic energy, and the above-mentioned constraints enforced by the use of
Lagrange multipliers.

V_i 1 T+ 21+ )dxdydz, ij=
_k—l [ 26!18ijk Rx Ry xdydz, Lj=X),2
+od+wdp (14 )( 1+ )drdyd
u U W ) Rx R x dydz,

nMw
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3 Zk Zk
= X% | v (e g1 g axar,
=0,K i=1 Sk Rx RY
K—1 6 Zk k
IC = > PR FO 1+ = — | dx dy,
k=1 i=1 Sk Rx R

n=v -—-T+S8C+IC. (11)

Modified Lagrange’s equations: The three-dimensional displacement can be
partitioned into the lower- and higher-order parts denoted by vectors U, and U,
namely,

{U}T = {U1| Uh}T,
(UL = U Viww Winn) s J=1,2,...,0 =2,
{Uh}T = {(ijm I/jmm VV}mn}Ts ] =J— 1, J. (12)

Using the lateral surface and interlaminar constraint conditions as above, the six
degrees of freedom of the higher order part can be eliminated in each layer for each
Fourier series component. A system of modified Lagrange’s equations of motion is
obtained via energy variation with respect to the generalized displacements and
Lagrange multipliers:

oI
ol .. r
S =0 = DM1{U} + [K (U} + [L]] {4} = (o), (13)

where [L;] is a matrix representing the surface and interlaminar continuity
relationship with [L5] and [L%] as submatrices through partitioning. [M] and [K]
are the mass and stiffness matrices of the system, which can be converted to reduced
forms by use of the lower order displacement alone.

Assuming simple harmonic motion in free vibration, the following eigenvalue
problem is derived:

[K] {U,} = w* [M]{U,}, (14)

where w is the natural frequency of the free vibration.

3. RESULTS AND DISCUSSION

By use of the present three-dimensional theory of laminated shells, a generally
survey is made in this work focusing on free vibration of the various simply
supported curved panels of rectangular planform. Numerical results are compared
with other results in the literature in the order of isotropic and laminated
composites, cross-ply and angle-ply in the cylindrical, spherical and hyperbolic
configurations. Different displacement fields are used for different boundary
conditions as the case pertains to. Basically, the concepts of constant or averaged
transverse shear of the FSDT, and the parabolic transverse shear distribution of the
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HSDT are inconsistent with real physics to account for three-dimensional
boundary conditions of no surface traction in free vibration and the interface
continuity of displacements and transverse stresses. The present theory are rigorous
in that all these conditions are taken into consideration through a 3-D augmented
energy as variational approach in persuit of a natural state for minimum potential
energy as required in the theory of elasticity. As a result, all natural frequencies
obtained in the present study are almost the lowest among all other results in the
literature, with few exception bearing an * marks which will be accounted for when
1t occurs.

3.1. ISOTROPIC CURVED PANELS

Firstly, consider several isotropic aluminum alloy cylindrical panels of axial
length a = 2794 cm and arc length b = 22-86 cm. The present results give the
lowest frequencies as compared against Deb Nath [ 1], Bardell and Mead [4], and
calculated values from Soedel [3] as shown in Table 1.

Natural frequencies of the first ten/twelve modes of the isotropic
cylindrical/spherical curved panels of square planform are shown in Table 2 in
comparison with the results of Shen and Wan [7], Geannakakes and Wang [8],
Fan and Luah [9], and values calculated as per Blevins [2]. In this case study, the
S, hinge-roller support displacement fields are adopted. Two frequencies in
reference [8] using B;-spline finite strips in the classical thin shell theory with exact
curvatures incorporated in the in-plane normal strains are found to be slightly
lower in the case of cylindrical panels. Otherwise, the present results yield the
lowest frequencies of all

Various isotropic shells: Table 3 shows the fundamental frequencies of various
isotropic shell panels as compared to Kobayashi and Leissa [5], in which larger
amplitude vibrations were investigated on a non-linear FSDT basis using shear
correction factor k = 2. Case studies include spherical and saddle panels of square
and rectangular plan forms for various thicknesses and radius parameters. Also
studied are thin to thick spherical and cylindrical panels versus aspect ratio b/a.

TABLE 1

Lowest frequencies w,, of aluminum cylindrical panels, Hz

R (cm) h (cm) m, n Ref. [1] [3] [4] S,

243-84 0-07112 1,1 144-5 143-8 144-3 142-1
243-84 0-12190 1,1 1639 163-1 1637 1614
182-88 007112 1,2 167-8 1672 167-8 1667
182-88 0-12190 1,1 201-7 200-8 201-4 1985
12192 0-07112 1,2 1822 1816 182-1 180-8
121-92 0-12190 1,2 282-3 281-8 282-5 2781

7075 T-6: E = 72 GPa, v = 1/3, p = 2:8 g/cm3.
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TABLE 2

Natural frequencies w,,, of isotropic curved shell panels, rad/s

Panels m,n Reference [2] [7] [8] [9] S,
Cylindrical 1,1 0-28452 0-28285 0-28220 — 0-28016
2,1 0-29765 0-30285 0-31593 — 029214
2,2 0-51697 0-50551 0-49745%* — 0-49846
3,1 0-55969 0-52489 0-51843 — 0-50971
1,2 0-59308 0-57185 0-58479 — 0-54862
1,3 0-76461 0-73930 0-71976* — 072361
3,2 0-77026 0-75758 0-75347 — 0-72931
2,3 0-89381 0-82441 0-80075 — 0-79998
4,1 0-94781 0-96993 0-97587 — 0-92680
3,3 103663 105842 1-05303 — 101875
Spherical 1,1 0-53585 0-52835 0-53146 0-53263 0-52543
1,2 0-59621 0-59151 0-59114 0-59041 0-58420
2,1 0-59621 0-59253 0-59641 0-59080 0-58487
2,2 0-69454 0-69040 0-68980 0-68486 0-67676
1,3 0-77430 0-77070 0-76283 0-76020 0-75219
3,1 0-77430 0-77307 0-77390 0-76260 0-75220
2,3 0-90779 090372 0-89397 0-89010 0-87811
3,2 0-90779 090744 0-89940 0-89025 0-87804
4,1 1-10208 1-10283 109537 1-07837 1-06234
14 1-10208 115263 1-13240 1-07871 1-06018
3,3 1-15259 — — 1-12711 1-10792
2,4 1-25531 — — 122187 120342

E=1,v=03,p=1,a=>b=10118, h =0-0191, R = 191, L = 1 (chord).

The present results give the lowest frequencies except for one case of thin spherical
shell where a loose discount of k¥ = 2 in their shear modulus was used in the FSDT
formulation. It is understood that FSDT might be easier for the complicated
non-linear analysis. Henceforth, no specific accounts and comments will be given
when lower frequencies reported elsewhere from FSDT or CSD as referred to later
in reference [29] for constant shear deformation are listed.

3.2. CROSS-PLY CURVED PANELS

Cylindrical cross-ply: To demonstrate the effect of aspect ratio, the normalized
fundamental frequencies of the [0/90] cross-ply cylindrical shell shallow panels of
radius R =40h and arc length b =20h are listed in Table 4. The present
three-dimensional analysis of S, reveals the most favourable frequencies in
comparison with Sinha and Rath [10], Bert and Kumar [11], Fong [13], Beakou
and Touratier [31], and Huang and Dasgupta [40].

The effects of thickness and curvature are considered as follows. In Table 5,
normalized fundamental frequencies Q = wa? (p/E,h?*)'/? are examined versus the
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TABLE 3

Fundamental frequencies of isotropic shell panels Q = wa[p(1 — v*)/E]*?

1. Spherical 2. Spherical 3. Spherical, a/h = 10

afh— 5] S» R./ja (5] S, bja (5] S»

5 10330 099626 10 0-1111 0-11044 0-5 13370 129904
10 05622  0-55250 20 007429 007222 1.0 0-5622  0-55358
50 01485  0-14766 50  0-06007  0-06004 1-5 0-4142  0-40454

100  O-1111 0-11026 100 005776  0-05719 2:0 03624  0-35023

200 009955 009912 o0 — 0-05647
4. Spherical, a/h = 100 5. Cylindrical, a/h = 10 6. Cylindrical, a/h = 100
bja [5] S, b/a [5] S, b/a [5] S,

05 01713* 0-18078 0-5 1-3360 131742 0-5 0-16150  0-16066
1-0 01111 0-11085 1-0 0-5563 0-55049 1-0 0-07429  0-07368
15 01039  0-08385 15 0-4044  0-39987 1-5 0-05053  0-04912
20 01018  0-06741 2-0 0-3505  0-34612 2-0 0-04039  0-03925

7. Spherical a/h = 100 8. Saddle, a/h = 100

RyR,  [5] S» RJR,  [5] S,

05 009144 009087 —10 005695 0-05553
1-0 011110 011026 —05 006174 0-06084

R, Ra=10; 34 Rja=R,/b=10; 78
., R,=R,, a/h=100; 56.RJa=10,R,= o0; 1-8.

TABLE 4

Fundamental frequencies Q = wb?*(p/E,h*)''* of [0/90] cylindrical shell panels of
shallowness ¢ = 0-5 rad

a/b Ref. [10] [11] [13] [31] [40] S,
1 1171 11-65 11-49 11:56 11-46 11-02
2 735 737 726 7-35 726 657
3 658 659 652 658 651 575
4 632 633 630 632 627 547
5 622 621 619 622 617 5-36

Ey/E; =25, E3/E; = 1, G13/E; = Gy3/E; = 05, Gp3/E; = 02, vi; = vi3 = v,3 = 025

radius-to-axial-length ratio R,/a for the 2, 3, 4 layered symmetric/antisymmetric
thick and thin cross-ply cylindrical shell panels of equal axial length a and arc
length b. The limiting case becomes a flat plate. Verification has been made against
Reddy [12] and Chakravorty et al. [16]. In reference [ 12], a shear correction factor
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TABLE 5

Normalized fundamental frequencies Q = wa* (p/E,h?*)'/?

panels, a = b

of cross-ply cylindrical shell

Panel a/h  Ra 1 2 3 4 5 10 10°

[0/90] 10  [12] 99865 91476 89832 89301 89092 88879 8-8998
S, 95325 90283 89391 89132 89041 89009 89184

P 89635 88460 88478 88577 88667 88919 89270

100 [12] 65474 34914 24516 19509 16:668 11-831 9-6873

— 24520 19522 16681 11:838 96893
S, 59071 31689 22439 18028 15551 11424 9-6824
St 50610 27413 19690 16077 14087 10899 9-6871

[0/900] 10 [12] 13172 12438 12:287 12233 12:207 12:173 12:162
S, 12:259  11-683  11-562  11-518 11498 11-469 11-457

2 11-784  11-575 11:524  11-504 11-493 11475 11-463

100 [12] 66:583 36770 27-116  22:709 20-332 16625 15183

— — 27-050  22:685 20-324 16:630 15-192
S» 60-248 33761 25305 21-502 19475 16364 15:165
S5 48793 28486 22238 19519 18105 15991 15-165

[0/90], 10 [12] 13128 12471 12:337 12289 12:267 12236 12:226
S, 12240 11767 11:669 11634 11-617 11:594 11-585

S5 11-796  11-663  11-632 11-618 11-611 11-599 11-591

100 [12 66704  36:858 27173 22749 20-361 16:634 15-184

S, 59730 33:532 25168 21409 19409 16:344 15167

S5 49-126  28:629 22310 19-558 18127 15991 15-167

Same material properties as in Table 4. v5; = 0-572 for S%.

x = 2 was used. It seems unreasonable to assume all equal the Poisson ratios as in
Table 4 in all three dimensions. Therefore, the transverse Poisson’s ratio
vh3 = 0-572 is calculated as per Philippidis [33].

Also shown in Table 6 are the fundamental frequencies in rad/s for the thick/thin
[0/90]s roller supported cylindrical shell panels with a = b, h = 1-0 in, as compared
to Reddy and Liu [22], and Palazotto and Linnemann [25], in which an extremely
large value of p = 1-0 slug/in® was assumed. Additional computation for density
p' =177 x 1073 slug/in® has been done for the case of graphite/epoxy.

As another example, Table 7 shows the variations of normalized fundamental
frequencies of simply supported cylindrical panels with radius-to-axial-length R,/a
from 1 to 1000. The [0/90], [0/90/0] and [0/90]s cross-ply laminations have a = b,
a/h =10 and R, = oo. Present results are good in comparison with the FSDT
study of Mizusawa and Kito [20] (x = 5/6), traditional HSDT of Reddy and
Liu [22] and Librescu et al. [24], and HSDT-based spline strip method of
Mizusawa [28].

Spherical cross-ply: The effects of thickness of curvature of cross-ply square
spherical panels are discussed in Tables 8-10. To start with the typical thin shells of
a/h = 100, Table 8 presents a comparison of normalized fundamental frequencies of
the thin square planform 2, 3, 4 layered symmetric and antisymmetric cross-ply
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TABLE 6

Fundamental frequencies w of [0/90]s roller supported cylindrical shell panels, rad/s

alh R, /a [22] [25] S, S,
10 5 108-4237 108-6415 106-4883 8768-1851
10 108-:0571 108:109 106:3356 8755-:6187
20 107-9655 107:9753 106:2779 8750-5922
50 107-9655 107-9379 106-2494 8748-7072
100 5 1-:86602 1-8697 1-:69505 139-4867
10 1-52416 152458 1-47563 121-2655
20 1-42519 1-42529 1-41362 116-2389
50 1-39585 1-39623 1:39471 114-9823
Ey 25  E, =840 ksi Gis in?
— = , = si — =05 v, =025 vhy = 0572 p = 1-0slug/in”,
E2 E2
E G G
= =1 —2=05 —2-05 v,=025 R, = P =177x1073.
EZ 2 EZ

TABLE 7

Fundamental frequencies Q = wa*(p/E,h*)Y? of s.s cylindrica panels

Reference  R,/a  [0/90] [0/90/0] [0/90]s R,/a [0/90] [0/90/0] [0/90]s

[20] 5 89087 12-2082 — 10 8-8883  12-1742 —
[22] 9-:0230 11-8500 11-8300 89790 11-8000 11-7900
[24] 89590 12:0090 12-0130 89330 119710 119770
[28] 9-0234 11-8460 — 89792  11-8040 —
S, 87954 11-5007 11-6054 8:8530 11-4630 11-5887
[20] 20 88901 12-1657 — 50 88951 12-1633 —
[22] 89720 11-7900 11-7800 89730 117900 11-7800
[24] 89340 119610 119680 89390 119590 119650
[28] 89725 119730 — 89734 117910 —
S, 8-8829 114535 11-5824 89013 114508 11-5793
[20] 100 88974 121633 — 103 8:8998 12-1629 —
[22] 89750 11-7900 11-7800 89760 117900 11-7800
[24] 89410 11-9580- 119650 89440 11-9580 119650
[28] 8-9746  11-7900 — 89760 11-7900 —
S, 89075 114504 11-5784 89131 112503 11-5776
[20] 1 99999  13-1719 —
S, 84686 12-5674 11-8993

E,/E, =25, E4JE, = 1, G15/Ey = G,3/E; = 05, Gp3/E, = 035, v,, = v 5 = 025, v, = 0-572

spherical shell panels to Reddy [12] with x = ¢, Ganapathi et al. [15], Chakravorty

et al. [17] and Goswami and Mukhopadhyay [18] and Fan and Zhang [30].
For moderate thickness a/h = 10, normalized fundamental frequencies of the 2,

3, 4 layered cross-ply square spherical shallow shell panels are shown in Table 9 for
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TABLE 8

1021

Normalized fundamental frequencies Q = wa*(p/E,h*)'? of cross-ply thin square
spherical shell panels, a/h = 100

Panel R/a 1 2 3 4 5 10 10°
[0/90] [12] 12593 67362 46002 35228 28825 16706 9-6873
[17] — — 45801 35126 28778 16706  9-6893
[30] 12593 67358 45991 35229 28823 16714 9-6824
S, 12300 65812 44962 34451 28210 16426 96824
[0/90/0] [12] 12599 68075 47265 36971 30993 20-347 15183
[17] — — 47305 36890 30963 20356 15192
[30] 12599 68061 47261 36968 30991 20327 15171
S, 12310 66598 46306 36280 30466 20145 15165
[0/90]s  [15] 126276 — 47399  — 31074 20385 15194
[18] 126239 68493 47529 37166  — — —
[30] 12632 68296 47417 37065 31069 20366 15171
S, 12312 66645 46341 36306 30486 20152 15167

E\/E, =25, E5JE, =1, G|,/E, = G3/E, =05, G,3/E, =035, v, =v,3 =v,3 =025

TABLE 9

Normalized fundamental frequencies Q = wa*(p/E,h*)''? of cross-ply moderately
thick square spherical shallow shell panels, a/h = 10

Panel R/a 5 10 20 50 100 10°
[0/90] [22] 9-337 9-068 8999 8-980 8977 8976
[24] 9-292 9-033 8:966 8:948 8945 8:944
[27] 9-2509 9-0086 8-9467 89293 8-9268 8-9259
[37] 9-248 9-006 8-944 8:927 8924 8923
S, 9-2008 8-9870 89322 8-9168 8-9145 89138
[0/90/0] [22] 1206 11-86 11-81 1179 1179 11-79
[24] 12-200 12:019 11-873 11-960 11-959 11-958
[27] 11-8149 116466 116038  11-5918  11-5901 11-5895
[37] 11-685 11-515 11-472 11-459 11-458 11-457
S, 11-6713  11-5140 114702 114554  11-4523 11-4503
[0/90] [22] 1204 11-84 1179 11-78 1178 1178
[24] 12208 12026 11-980 11967 11965 11965
[27] 11-8148 116465 116038  11-5918  11-5901 11-5895
[37] 11-811 11-642 11-599 11-587 11-586 11-585
S, 11-7917  11-6380  11-5958  11-5819  11:5792 11-5775

the various radius-to-curved-length ratio from R/a =5 to flat plates. Material
properties are the same as in Table 7. The present results checked well with
traditional higher order theory of Reddy and Liu [22], Librescu et al. [24], Wu
et al. [27], and Chao and Tung [37].
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TABLE 10

Normalized frequencies Q,,, = w,, ,a* (p/E,h?*)''* of [0/90]s cross-ply square spheri-
cal shallow shell panels

1/2

R/a a/h m, n 1,1 1,2 2,1 2,2 1,3

3 10 [12]F 12779278  22:63890  29-72045  35-17592  38:31140
[21]  13-05551  23:20745 30:39797  36:29395  39:79291

S, 12:11566  21-98095  26:97128  32:69434  37-27270

100 [12] 4741525 6097662 76:26018 7513405 8646918

[21] 4795226  62:66462 7829612 7797635  90-59067

S, 4529985 5941826  74-82526  73:65320 85-46741

5 10 [12] 1243619 2236235 29:56296 3510534 3807252
[21]  12:61308  22:84572  30-16340 36:15446  39:46570

S, 11-78305 2171632 26-80590  32-63062  37-03740

100 [12] 3107907 4292415 6292941 6599475 6779810

[21] 3146153 4409002 64-44392 6843393  70-80062

S, 29-92289  42-17802  62-11863 6523026  67-37816

10 10 [12]  12:28005 2224316 2949652 3507542 3797058
[21] 1241384 22:68744 3006171 36-09381  39-32355

S, 11-63377  21-59622  26-73362  32:59945  36:93022

100 [12]  20-38024  32:30546  56:30135 61:71514  58-:08370

[21] 2065688  33-12916 5749284 6392740  60-40510

S, 19-94244 3208084  55-82609  61-28186  57-94395

Same material property as in Table 7.

To show the difference between the moderately thick and thin lamination, Table
10 is presented for the first five mode natural frequencies of the [0/90]s square
spherical shallow shell panels. Verification has also been made against Reddy [12]
with ¥ = 2, and Wang and Schweizerhof [21].

Cylindrical versus spherical panels: Comparison of cross-ply cylindrical and
spherical curved panels for the same material, thickness, stacking sequence and
curvature is made in Table 11. Normalized fundamental frequencies of the cross-ply
cylindrical and spherical shell panels are examined for thickness ratio h/a = 0-05,
0-10 and 0-15, and radius-to-side-ratio R/a = 1, ...,10°° with Bhimaraddi’s [29]
constant shear deformation (CSD or FSDT) parabolic shear deformation (PSD or
HSDT), and 3-D analysis. Strictly speaking, the single-terms assumption for the
three-dimensional stresses in reference [29] is to ignore the Poisson ratio effects on
the stiffness in other directions, and thereby lower frequency results. A few lower
CSD frequencies are noted for a reduced shear modulus by use of k = n?/12. The
present frequency results are also the lower when compared to those of Leissa and
Qatu’s [26] elastic deformation study, Ye and Soldatos’s [32] 3-D study, and Wu et
al. [42] refined asymptotic theory.

Spherical and saddle panels: To check the effects of curvature in opposite
directions, Table 12 presents the first eight modes of normalized frequencies
Q = wR, (p/E,)''? for the cross-ply moderately thick spherical and saddle shell
panels, with a = b = 10h for two to 10 layers in comparison with Huang [41]
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TABLE 11

Fundamental frequencies Q = wa(p/E>)Y? of [0/90] cross-ply cylindrical and
spherical shell panels

Panel h/a =0-05 0-10 0-15 0-05 0-10 0-15
Cylindrical Ryja=1 R,/a =10
[291°°2 078683 1-04085 129099 0-47859 0-89564 1-23374
[2971752  0-79993 1:09189 1-38174 0-47997 0-90150 1-24875
[291¢52  0-79798 1-07475 1-33274 0-47677 0-88026 119342
[32] 0-79316 106973 1-34537 0-47959 0-89778 1-23707
[26] 0-80580 1-14313 1-54124 0-48827 0-96074 1-41709
[42] 0-79255 1-06756 1-33990 0-47941 0-89698 1-23394
S, 0-63361 0-95501 1-24725 0-47746 0-89526 1-23350
RyJa=2 R,/a = 10%°
[291°°? 057252 0-93627 1-25377 0-47635 0-89179 1-22905
[297752  0-58000 0-95664 1-28933 0-47483 0-89761 1-24437
[291¢52  0-57733 0-93653 1-23527 0-47161 0-87640 1-18923
[32] 0-57702 0-94951 1-27598 0-47371 0-89248 1-23001
S, 0-52582 091797 1-24773 0-47279 0-89032 1-22730
Spherical R,/a=1 R,/a =10
[291* 2 129835 1-:39974 1-51936 0-49127 0-89912 1-23249
[29]75P  1-32595 1-49075 168141 0-49341 0-90679 1-25034
[291°52  1-32483 1-48008 1-64797 0-49031 0-88584 119559
[26] 1-33000 1-52391 1-78940 0-50149 0-96519 1-41639
[42] 1-31049 1-44004 1-58988 0-49218 0-90038 1-23232
S, 1-27703 1-36100 1-45599 0-48953 0-89223 1-21857
Ryja=2 R,/a =10%°

[291* 2 079577 1-05528 1-31111 0-47365 0-89179 1-22905
[291752  0-81059 1:09708 1-38083 0-47483 0-89761 1-24437
[291¢52  0-80870 1-08054 1-33375 0-47161 0-87640 1-18923
S, 0-78987 1-03456 1-26593 0-47336 0-89228 1-22985

E/E, =25, E{/E; =1, G13/E; = G13/E;, =05, Gp3/E, =02, vy, = 025, v3; = 0:03, v,3 = 040,
a = b, Cylindrical: R, = o0, a in axial direction; Spherical: R, = R, = R.

three-dimensional analysis. The present results are generally of lower frequencies
except for the nine out of 160 cases compared.

3.3. ANGLE-PLY SHELL PANELS

Now, consider the angle-ply cylindrical shallow panels. Convergence of the
normalized fundamental frequency of the [ & 45] cylindrical panels of shallowness
angle ¢ = 20° is firstly examined in Table 13. Both the S, and S; displacement
fields have been employed. Seven terms for m, n each in the double Fourier series is
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TABLE 12
First eight frequencies Q = wR, (p/E,)"'* for cross-ply shallow shell panels

L Ql,l QI,Z 91,3 Ql,l 92,2 Q2,3 Q3,1 Q3,2

Spherical panels, R = 50h, a = b = 10h

[41] 2 46238 *10-7530 *19-1300 10-8640 149090 *21-9610 19-3150 22-0530
3 58423 92156 153830  14-1380 159720 20-2920 23-1960 24-4470
4 58070 *12-1340 *19-8460 12-8800 16-2980 *22:7190 19-9320 22-7570
5 61090 109820 17-6890 140130 16:7910 21-8330 22-6270 24-4830
10 62293 *13-0500 *21-0420 13-0760 17-4320 *24-0270 21-0820 24-0450
S, 2 45945 107731 19:1967 10-7988 14:8856 21:9944  19-2088 21-9754
3 58307 92070 15:3759 141281 159623 20-2830 23-1857 24-4365
4 57900 12-1581  19-8987 12:1367 162832 22-7428 19-8526 22-7049
5 60977 109729  17-6814 140042 167816 21-8241 22-6190 24-4739
10 62163 13:0597 21-:0686 13-0460 17-4215 24-0374 21-0374 24-0149
Saddles, R, = — R, =20h, a = b = 10h
[41] 2 17576 44079 7-8545 44077 60483 89442 78545 8:9443
3 21761  3-6706 6-2281 56001 62959 80530 92751 97134
4 22040 4-8830 80503 48826 65145 91328 80501 9:1328
5 22819 43602 7-1240 55495 66218 86675  9-0528 9-7268
10 23477 52011 84692 52006 69151 9-5898 84689 9-5897
S, 2 16213 42161 76326 42219 57487 85998 76391 8:6025
3 21566 3-6661 62286 55914 62901 8:0495 92686 9:7080
4 21148 47833 79451 47861 63661 89670 79486 8-9684
5 22606 43523 71217 55404 66135 86615  9:0471 9-7198
10 22961 51538 84255 51544 68480 95195 84273 9:5201

Ey/E; =25,E3/E; = 1,G12/E; = 0-5,G13 = G132, G3/E; = 02, v = vi3 = v23 = 0-25,[0/90/0 ... ]

TABLE 13

Convergence of fundamental frequencies Q = w a*(p/E,h*)''? of [ + 45] angle-ply
thin cylindrical panels, ¢ = 20°

n=m 1 2 3 4 5 6 7

[6] 27-120 26-354 26-298 26-171 26166 — —
[14] 27019 27262 27-375 27-420 27415 27-430 27-440

S, 28114 26-702 25923 25-585 25183 24-987 24-885
S, 23-549 21-688 20922 20-766 20-961 20-905 20-891
Ei _ Giz _o6 93 _0s . _o _ _ in (2
540 GI=06 SEo05 v =025 ah=20 Ry—a/|:2 sin <2>}
Ea 1 % _06  vg—0646 vy =025 Ro=w  b=R, ¢
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TABLE 14

Fundamental frequencies of antisymmetric laminated cylindrical panels of square
planform

0 0° 300 45°  60° 90> 0° 30° 45 60°  90°

Layers Shallownes angle ¢ = 30° Shallownes angle ¢ = 45°

2 [23] 1998 23-52 3648 5021 5634 22:85 3136 5159 53:97 56:08
[19] 20-04 23-69 3682 5138 — 2297 31-68 52:19 7448 —
[40] 1911 2212 2922 33-51 3658 — — — — —
[28] 2005 23-54 3653 5122 — — — — — —
S#' 1266 16:51 24-84 2891 3438 1585 22:65 3356 3503 39-71
S¥* 1243 16113 2439 2827 3359 1557 22:06 3303 3412 38:66

4 [23] 1998 2799 40-01 5269 5634 22-85 34-84 54-18 6975 56-08
[19] 20-04 2816 4032 5361 — 2297 3512 5470 7604 —
[28] 2005 2806 40-14 5352 — — — — —
S¥' 1266 1857 2834 3248 3438 1585 2445 3680 3965 39-71
S%¥* 1243 1817 2766 31-82 3359 1557 23-80 3586 3852 3866

o0 [23] 1998 2926 41-05 5340 5634 22-85 3586 5497 7141 56-08
[19] 20-04 29-37 4130 5426 — 2297 3608 5543 7650 —
[28] 20-05 2937 4130 5426 — — — — — —
S¥' 1266 1902 30-04 3313 3438 1585 24-82 3838 4124 3971
S%? 1243 18:60 2941 32:53 3359 15-57 24-18 37-52 40-11 38:66

E
E—l =40, G,3 =05 E,, G, = G;3 = 0-6E, for mat. # 1 in reference [40], or
2
E
2o, Vi = Vi3 = V33 =025 Gy, = Gy3 = 0-5E, for mat. #2 in references [23, 19, 28].

2

enough to attain good convergence, and the present results are considerably lower
than those of Soldatos [6], and Kabir and Chaudhuri [14].

To show the effects of number of layers, shallowness angles and fiber
orientations, the normalized fundamental frequencies Q = wb?(p/E,h*)'/? are
shown in Table 14 for the antisymmetric laminated cylindrical panels with
thickness ratio fixed at a/h = 20, number of layers from 2 to infinity, shallowness
angle ¢ = 30° and 45°, and fiber orientations 8 = 0°, 30°,45°, 60° and 90°. By use of
the S5 displacement fields, a good comparison has been done with Soldatos [23],
Mizusawa and Kito [19], Huang and Dasgupta [40], and Mizusawa [28] in which
an HSDT-based spline strip method was used. The present results are remarkably
lower than all of theirs. However, reference [40] was the closest correspondence as
a result of the same three-dimensional point of view in spite of different solution
methods. In the case of angle-ply, the S;-type displacement field is used because of
its suitability for tangential movement along the edges.

3.4. VARIOUS PANEL CONFIGURATION

In an overview that follows, a series of various doubly curved shallow
shell panels is discussed for the effects of stacking sequence, geometrical
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TABLE 15

Normalized frequencies Q = wa®(p/E»)'"* of simply supported [0/90]s symmetric
cross-ply square shell panels

afh Q, Q, Q, Q, Q, Q

Saddle panels 10§, 150152 258072 369498 42:4362 427485 54:6470

(R, = 10q) 20 S, 175349 310719 53-6994 56-3848 60-1950 77-1561
(R,=—R)) 50 S, 184014 33:5264 64-5347 654062 72:0046 92-0230
100 S, 18-:0302 34-8389 67-5922 683070 742883 95-0335

Plate 10 S, 150627 258320 369729 424430 427826 54:6770
(a/R, =0) S, 150627 258317 369734 424446 427829 54-6787

(a/R, = 0) 20 S, 17-6142 310762 53-7147 56:3474 60-2510 772077
S, 17-6141 31-0758 53-7147 56:3461 60-2508 77-2069

50 S, 186412 33:2877 64:0629 652851 72:1219 92-1039

S, 186412 332876 640624 652851 721219 92-1036

100 S, 188052 33:6468 654766 676665 74:5650 95-1267

S, 188052 33-6468 654764 676665 74-5650 95-1266

Cylindrical 10 S, 150711 258375 369844 42:4536 427877 54-6859

panels 20 S, 176549 31-0918 53-7662 56:3671 60-2675 77-2247
(a/R, =0) 50 S, 188856 33-3193 64-1098 656326 72:2049 92-1600
(R, = 10a) 100 S, 197216 33:6410 655115 69-:0583 74-8481 95-2509

Spherical 10 S, 151067 258789 369851 42:4931 427819 54-6921

panels 20§, 178237 312739 537903 56-:5250 60-3032 77-2655
(R, = 10qa) 50 S, 199592 344771 650891 658382 72:4760 92-4575
(R, = 10q) 100 S, 236321 380870 69-3475 69-9023 759559 96-4634

E,JE, =40, E,JE, = 1, G ,/E, = 0:6, G,,/E, = 06, G,,/E, = 05, v,, = v,, = 025, V2, = 0641,

configuration, curvatures in opposite directions, thickness, and type of boundary
conditions.

Symmetric cross-ply: As a typical example, comparison of natural frequencies is
made for the various shaped moderate thick to thin symmetric [0/90]g cross-ply curved
panels of square planform. For ease of normal movements along edges, typically S,
boundary condition and displacement fields are employed in numerical computation.
Results of S, fixed pin supports are also given for the plates with only slight difference.
Increasing frequencies are noted for the first six modes in Table 15 in the order of
saddle, plate, cylindrical and spherical shallow shells in accordance with the minimum
total potential energy principle for the various geometrical configurations.

Symmetric angle-ply: In a final example, natural frequencies are discussed in
Table 16 for the first few modes of the simply supported [45/ —45]s symmetric
angle-ply square plan form curved panels from moderate to thin thickness. Both S,
and S;-type edge boundary conditions and displacement fields have been used for
the saddle, plate, cylindrical and spherical panels. It is noted that natural
frequencies are to increase in the same order as the cross-ply above. S is the most
suitable for angle-ply of the all except for the spherical shapes for which the S,
functions are preferred.
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TABLE 16

Normalized frequencies Q = wa® (p/E,h*)Y? of simply supported [45] — 45]s sym-
metric cross-ply square shell panels

a/h Q, Q, Q, Q, Q, Q,

Saddle panels 10 S, 180360 31-6922 34-4834 37-0465 454222 551545
(R, = 10q) Sy 17-6441 29-7159 31-1708 33-1842 40-5254  42-4109
(R,= —R,) 20 §, 21-5486 40:3099 512038 63-0031 689320 782848
S, 21-1111 375716 40-7966 53-5785 58:3716  67-4669

50 S, 229140 449756 60-0334 737082 94-1282 107-9297

Sy 237443 4277873 499326 68:0441 689959 100-4039

100 S, 22:6762 47-1488 62-7339 76:0074 98-1066 112-8214

S5 274665 46-1189 57-5584 72:6650 81-1309 107-3599

Plate 10 S, 181058 31-6761 344144 37-:0320 454613 551427
(a/R, =0) S5 17-6039 29-:6919 31-1450 33-2055 40-5107  42-3885
(a/R, =0) 20 S, 21-6397 402410 51-1496 63-0426 68-8288  78-2469

S; 209239 374726 40-6969 53-5054 58-4180  67-4189
50 S, 23:1467 445100 59:6856 736734 93-8869 107-8227
S; 22:5476 421739 49-3665 67-6315 68-8182 100-1561
100 S, 23:3941 452554 61-3201 757078 97-1051 112-3018
S; 229831 437250 55-5288 71-8643 79-7067 106-5833

Cylindrical 10 S, 182143 31-6961 344334 37-0448 454942 551497

panels Sy 17-8522 297822 31-1813 33-1944 40-5325  42:4306
(a/R, =0) 20 S, 22:0656 403213 51-2065 63-1524 68-8575 782785
(R, = 10q) S; 21:8549 37-8363 40-8567 53-6030 58:5447  67-4303

50 S, 256465 449783 60-0457 742823 94-0702 108-1129
S;y 277457 44:3836 50-7089 684070 69-7206 100-4897
100 S, 32:2080 469165 62:8222 779935 977917 113-3822
S; 397804 519084 61-8761 753627 834225 108:5618

Spherical 10 S, 186050 31:7243 34-4145 370601 456179 551470

panels 20 S, 23:3875 404617 51-3005 634847 68:8291  78:3018
(R, = 10q) 50 S, 322629 459105 60-7028 759478 94-2987 108-7782
(R, = 10a) 100 S, 50-6093 50-7432 65-3232 83-7801 98-7530 115-9839

Note: Same geometry and material properties as in Table 15.

4. CONCLUSIONS

1. A complete survey of the literature has been conducted and comparison with
it made on free vibration of composite laminated shallow shell panels
according to the present three-dimensional theory. Lowest frequencies are
obtained in the order of saddle (hyperbolic), flat plate, cylindrical and
spherical configurations in accordance with the minimum total potential
energy.

2. The present three-dimensional semi-analytical solution is based on the theory
of elasticity. Unlike the traditional theories of plates and shells, the 3-D
boundary conditions and interlaminar continuity of layer displacements and
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th

10.

11.

12.

13.

transverse stresses are satisfied by use of the assumed admissible displacement
fields and Lagrange’s multipliers via a 3-D augmented energy variational
approach to the natural state.

3. A system of three-dimensional higher order displacement fields has been
developed for a variety of edge boundary conditions such as S; fixed pin, S,
hinge-roller, and S5 sliding pin supports in consistence with physical reality
and mathematical requirements. Cases other than simply supported will be
treated in follow up papers.

4. In general, the S, displacement functions are most suitable for cross-ply and
S for angle-ply curves panels for ease of normal and tangential movements
along edges, respectively. In certain circumstances of symmetric angle-ply thin
spherical panels, edgewise sliding is likely to be hindered by the double
curvature, and the S, displacement functions are preferred for lower
frequencies.
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